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Abstract A coastwide bloom of the toxigenic diatom Pseudo-nitzschia in spring 2015 resulted in the
largest recorded outbreak of the neurotoxin, domoic acid, along the North American west coast. Elevated
toxins were measured in numerous stranded marine mammals and resulted in geographically extensive and
prolonged closures of razor clam, rock crab, and Dungeness crab fisheries. We demonstrate that this outbreak
was initiated by anomalously warm ocean conditions. Pseudo-nitzschia australis thrived north of its typical
range in the warm, nutrient-poor water that spanned the northeast Pacific in early 2015. The seasonal
transition to upwelling provided the nutrients necessary for a large-scale bloom; a series of spring storms
delivered the bloom to the coast. Laboratory and field experiments confirming maximum growth rates
with elevated temperatures and enhanced toxin production with nutrient enrichment, together with a
retrospective analysis of toxic events, demonstrate the potential for similarly devastating ecological and
economic disruptions in the future.

1. An Unprecedented Coastwide Toxic Algal Bloom

Record-breaking concentrations of the marine neurotoxin, domoic acid (DA) in 2015 caused unprece-
dented widespread closures of commercial and recreational shellfish and finfish fisheries and contributed
to the stranding of numerous marine mammals along the U.S. West Coast (Figure 1). Several species of the
marine diatom, Pseudo-nitzschia, many of which produce DA, have been responsible for toxic blooms
around the world [Lelong et al., 2012; Trainer et al., 2012]. The toxin is transferred through marine food
webs by ingestion of live, dying, or dead Pseudo-nitzschia cells by pelagic and benthic organisms and
sickens or kills marine mammals and sea birds, as well as humans who ingest contaminated fish, shellfish,
or crustaceans [Lefebvre et al., 2002]. Seafood contaminated with DA cause symptoms in humans ranging
from mild gastrointestinal distress to seizures, coma, permanent short-term memory loss, and death [Perl
et al., 1990].

Seasonal blooms of Pseudo-nitzschia are common along the U.S. West Coast. Past toxic events have been
attributed to a number of different species of this genus [Trainer et al., 2012]. Analyses of DA outbreaks over
the last two decades have identified regional initiation “hotspots” where blooms either develop or become
concentrated. These source zones tend to coincide with retentive flow patterns, such as those associated
with seasonal eddies [Trainer et al., 2002], over submarine banks [Hickey et al., 2013], or in the lee of coastal
capes [Graham et al., 1992; Trainer et al., 2000]. Toxic blooms off central and southern California are generally
due to P. australis [Scholin et al., 2000; Sekula-Wood et al., 2011] whereas toxic spring blooms off Washington
and Oregon are rarely caused by P. australis and, instead, are attributed to several different species [Trainer
and Suddleson, 2005; Trainer et al., 2009]. Here we show that the highly toxic species, P. australis, bloomed
simultaneously along the west coast of the U.S. and Canada in spring 2015. This extensive bloom was a con-
sequence of three sequential factors: the onset of seasonal upwelling, followed by a series of late spring
storms and the northward transport of the toxin-producing P. australis at a time of anomalously high surface
temperatures throughout the northeast Pacific. Refer to the supporting information for a description of data
analysis methods used herein.
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2. The North Pacific Ocean Warm Anomaly

A ~500 km wide and ~100m deep body of anomalously warm, relatively fresh, and nutrient-poor water
(hereafter referred to as the warm anomaly) developed in fall 2013 in the northeast Pacific Ocean and per-
sisted throughout 2014 and 2015 [Freeland and Whitney, 2014; Bond et al., 2015; Whitney, 2015a, 2015b;
Peña and Nemcek, 2016; Di Lorenzo and Mantua, 2016] (Figure 2). Water in this region was more than 2.5°C
warmer at the sea surface than the long-term mean temperature. The anomaly was caused by an expansion
of the North Pacific atmospheric high-pressure cell to the north, which led to reduced ocean cooling and
enhanced northward surface ocean transport by anomalous easterly winds [Freeland and Whitney, 2014;
Bond et al., 2015; Peterson et al., 2015a].

Figure 1. Impacts of domoic acid (DA) on fisheries andmarine mammals in 2015. Shaded areas with shellfish symbols on land denote shellfish closures. Fish symbols
indicate northern anchovy closures at designated landing sites. Shaded or hatched areas offshore (Dungeness crab and rock crab) correspond to the closures listed
on the left. Stranded marine mammals with detectable DA (orange) and California sea lions diagnosed with DA poisoning (red) are pictured with the number of
individuals indicated. DA poisoning is defined as the presentation of at least two of the following: neurologic signs (seizures, head weaving, ataxia), detectable DA,
histopathologic lesions, and/or blood chemistry changes.

Geophysical Research Letters 10.1002/2016GL070023

MCCABE ET AL. THE 2015 U.S. WEST COAST TOXIC ALGAL BLOOM 10,367



At the end of the upwelling season in September 2014, thewarm anomaly expanded towaters adjacent to the
continentalmargin, aswasapparent fromtheexceedinglywarmsurface temperaturesmeasuredat continental
shelf buoys (Figures 2c–2e). Coincidentwith this encroachment of warmwater into the coastal zone, the cope-
podcommunityoff centralOregontransitioned froma “coldwater” toa “warmwater”assemblagethat included
southern species, such as Rhincalanus nasutus and Clausocalanus furcatus, not seen since the 1998 El Niño
[Peterson et al., 2015a]. Numerous observations of other southern species well north of their typical habitats
have been linked to thewarm anomaly [Bond et al., 2015; Peterson et al., 2015a, 2015b]. In early 2015, thewarm
anomaly extended along the entire west coasts of the U.S. and Canada (Figure 2a). On 10 March 2015, DA was
detected in preserved zooplankton net tow samples collected in thewarmwater off Trinidad, California (41°N).
Similar samples collected 1month later off Newport,Oregon (44.6°N), also containedDA. Both samples confirm
the presence of a toxic species of Pseudo-nitzschiawithin the anomalously warmwater prior to spring 2015.

In spring 2015, the warm anomaly moved well offshore (Figure 2b) and by summer had diminished in size
and strength and remained isolated from the coast (with the exception of southern California). The summer-
time offshore movement of the warm anomaly was controlled by the alongshore, southward winds, which
move surface water to the right of the wind vector as a result of Earth’s rotation. Onshore movement of
the water mass was critical to whether any associated biotoxin-producing species were able to reach the
coast where they could then be fueled by nutrients from coastal upwelling. As long as the anomalously warm
water remained separated from the coast, it would have lacked sufficient macronutrients to fuel a significant
phytoplankton bloom.

3. Springtime Shelf Conditions and Nutrient Supply

Northward winds over the continental shelf during storms cause onshore flow in the upper water column and
downwelling andmixing at the coast. The switch to prevailing southward winds along the coast in late spring
and summer leads to offshore transport of near-surface waters and to upwelling of deep nutrient-rich water
within a few tens of kilometers of the coast (Figure 2). This seasonal change, termed the “spring transition”

Figure 2. Anomalously warm surface water in the North Pacific Ocean. Sea surface temperature anomalies (°C) from the
NCEP/NCAR Reanalysis for the 3 month period of (a) January, February, March (JFM) 2015 and (b) April, May, June (AMJ)
2015, relative to the 1981–2010 composite average. Blue arrows indicate (Figure 2a) downwelling and (Figure 2b) upwel-
ling. (c–e) Multiyear near-surface temperature records from three National Data Buoy Center (NDBC) buoys off the U.S. West
Coast (numbered locations shown in left panels). Temperature records from 2014 and 2015 are colored cyan and magenta,
respectively, whereas data from all other years are colored gray.
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[Huyer et al., 1975], occurs almost simultaneously along the entire coast [Strub et al., 1987; Strub and James,
1988] and provides the macronutrients that drive the rich biological ecosystem characteristic of North
American west coast waters.

Nutrient-depleted water does not generally support a dense phytoplankton bloom. Indeed, no evidence of
enhanced chlorophyll a (a proxy for phytoplankton biomass) was observed in the winter or early spring
satellite images in the central North Pacific (Figure 3e), although brief upwelling favorable winds did result
in a few short-lived phytoplankton blooms very near the coast. However, with the return to seasonal upwel-
ling favorable conditions in mid April 2015 (the mean transition period observed in this region for the past
two decades [Thomson et al., 2014]), satellite-derived chlorophyll a increased along the continental margin
of the western U.S. (Figure 3f). Off Washington, winds switched to a predominantly southward direction
(Figure 3a), with the upwelling response clearly captured by a moored chain of thermistors as a rapid cooling
and increased stratification beginning in mid April (Figure 3b). Near-surface currents at a site on the southern
BritishColumbia continental slopechanged fromweak (andoftennorthward)prior to the transition, to strongly
southward following themidApril switch to upwelling (Figure 3c). After the spring transition, surfacewaters all
along the continental margin cooled as the anomalously warmwater was advected offshore (Figures 2b–2e).

4. The Phytoplankton Bloom and Its Toxin

With the transition to upwelling of cold, nutrient-rich water to the euphotic zone, spring blooms of phyto-
plankton are observed annually over the continental shelf of the northeast Pacific [Thomas and Strub,
1989; Landry et al., 1989; Lynn et al., 2003; Jackson et al., 2015]. Such blooms containmany phytoplankton spe-
cies but are primarily composed of centric diatoms, which are not toxic.

Details of the timingbetween coastalwinds and currents, the spring transition, the rise of total Pseudo-nitzschia
abundance, and toxin concentration in seawater are shown in Figure 3 for LongBeach,Washington. Results for
this station are representative of otherU.S.West Coast locationsnorthof central California (Figure 4). The spring
transition toupwellingbeganwithweak southwardwinds on7April, culminating in strongupwellingwinds on
16 April (Figure 3a). Phytoplankton near the coast began to increase in abundance (i.e., bloom)when nutrients
from depth were supplied to the euphotic zone on the inner shelf. Once the upwelled water mixed with the
overlying and adjacent waters of the warm anomaly, phytoplankton, including P. australis, bloomed
(Figures 3 and4) andmoved seaward in theoffshore flowing surface layers. Scanningelectronmicroscope ana-
lysis of a zooplanktonnet towsample (integrated0–100m, 202μmmesh) collected~9 kmoffshoreofNewport,
Oregon, on 7 April reveal an assemblage of Pseudo-nitzschia chains containing 65% P. pungens and 35% P. aus-
tralis (Figure 4e). On 15 April, a phytoplankton net tow (20μmmesh) off Kalaloch, Washington, documented a
similar assemblage (56% P. pungens, 22% P. australis, and 22% P. cf. heimii; Figure 4c). By 22 April Pseudo-
nitzschia abundance estimates were 104 cells L�1 at Washington beaches, and on 26 April cell densities had
increasedbyanorderofmagnitude immediately following thefirst of a series of spring storms thatmoved toxic
cells shoreward. Two additional storms occurred in early May, transporting the surface bloom back toward
shore while mixing near-surface andmiddepth water with recently upwelled water. As Pseudo-nitzschia abun-
dances peaked in earlyMay (Figure 3d), P. australis emerged as the dominant species from central California to
southern British Columbia (Figure 4). In late May, upwelling was more persistent and P. australis abundance
decreaseddramatically as newlyupwelledwater likely transportedmore regionally typical species fromdeeper
depths. By June 2015, the more endemic and less toxic diatom P. fraudulenta had replaced P. australis in the
northern waters off Washington and Oregon (Figure 4).

Concentrations of water column particulate DA (pDA) also peaked in late April and early May, coincident with
peaks in P. australis abundance (Figures 3d and 4). DA concentrations in razor clams (Siliqua patula) and mus-
sels (Mytilus spp.) began to rise in early May north of central California (Figure 4). As expected, the timing of
maximum DA in razor clams lagged the periods of both maximum pDA and Pseudo-nitzschia abundance
[Hickey et al., 2013]. Laboratory analysis of DA concentrations in mussels (M. californianus) indicated that
the regulatory limit of 20 ppmwas first exceeded on 29 April off Santa Cruz, California. Following this, shellfish
samples collected from beaches throughout Oregon, Washington, and British Columbia, exceeded the regu-
latory limit, resulting in the closures of tribal, commercial, and recreational shellfish harvests (Figure 1). In
Washington, ~1950 kg of clams harvested 1 day prior to the closure were ordered to be discarded.
Although mussels depurate DA relatively quickly (days to weeks), razor clams retain DA for months [Horner
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Figure 3. Relationship between physical environmental conditions and the toxic spring Pseudo-nitzschia bloom. (a) North-
south wind stress off Washington (site NDBC). (b) Water column temperature at five depths at a site on the 42m isobath off
Teahwhit Head, Washington (site TH). (c) Along-slope near-surface currents off the southern British Columbia-northern
Washington continental slope (site A1). (d) Total Pseudo-nitzschia abundance (black line with green shading) and pDA
(magenta line) off Long Beach, Washington (site LB). Site locations are shown in the inset. Satellite chlorophyll a estimates
are averaged over the periods of (e) 27–31 March 2015, and (f) 06–08 May 2015.
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et al., 1993]. Razor clam DA concentrations began decreasing in late May off Washington and Oregon, but
harvest closures continued at one Washington beach through June 2016.

Domoic acid outbreaks often continue to impact benthic organisms long after the toxin-producing species
have dissipated [Horner et al., 1993]. Following the 2015 spring bloom and the mussel and razor clam fishery
closures, Washington closed the coastal Dungeness crab fishery on 5 June (Figure 1), ~4.5months earlier than
scheduled and were forced to delay the December reopening. In California, the commercial and recreational
Dungeness and rock crab fisheries did not open as expected at the beginning of November and the

Figure 4. DA in mussels or razor clams (red line) and Pseudo-nitzschia abundance at six locations along the North American
west coast (see lower inset). (a) North-south wind stress off Washington. Pseudo-nitzschia species abundance (colored bars)
quantified as (b–f) percentage or as (g) cells L�1. Text labels indicate sample type, including phytoplankton net (not
labeled), Z = zooplankton net, W =whole water. The regulatory shellfish DA limit of 20 ppm is shown (horizontal gray band).
Figures 4c and 4d include total Pseudo-nitzschia abundance (black line). Figures 4c, 4d, and 4g include water column pDA
(magenta line with open circles).
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Dungeness crab fishery was not reopened along the entire U.S. coast until May 2016. Given that Dungeness
crab are the single most valuable fishery on the U.S. West Coast, with an estimated ex-vessel value of ~$170
million [Pacific States Marine Fisheries Commission Dungeness Crab Report, 2014], it is not surprising that the
State of California requested a federal fishery disaster declaration from the U.S. Department of Commerce.

A research cruise aboard the National Oceanic and Atmospheric Administration (NOAA) Ship Bell M. Shimada
from 20 June to 7 September sampled phytoplankton abundance and pDA from southern California to northern
British Columbia (Figure 5). Elevated concentrations of pDA and P. australiswere measured at the majority of sta-
tions south of central Oregon, and the pDA concentrations atmany of the California stations exceeded previously
reported maximum values, reaching 19,978ngmL�1. Pseudo-nitzschia was the dominant phytoplankton genus
at approximately half of the stations sampled off California (Figure 5b). At times, the densities of Pseudo-nitzschia
cells were so high that even zooplankton net tows were clogged with long chains (Figure 5c). Live samples
collected near Point Conception, California, commonly included chains of 20–30 cells with large, bulging
chloroplasts. The research vessel arrived off Oregon and Washington after the initial bloom and after the
Pseudo-nitzschia community shifted to P. fraudulenta in that region. Thus, pDA concentrations were low or
undetectable in waters where either P. fraudulenta or P. pseudodelicatissima were prevalent (Figure 5).

5. Toxins and the Food Chain

The impact of this toxic diatom bloom propagated up the food chain to include many species of marine
mammals. In 2015, DA was detected in whales, dolphins, porpoises, seals, and sea lions ranging from south-
ern California to northern Washington between March and November (Figure 1). This was the largest geo-
graphic extent of DA detection in marine mammals ever recorded globally. DA was first recognized as a
threat to marine mammal health in 1998 when hundreds of California sea lions (Zalophus californianus)

Figure 5. (a) Particulate DA and (b) Pseudo-nitzschia abundance in surface (3m) seawater samples collected aboard theNOAA Ship Bell M. Shimada from June through
September (months shown in shaded boxes, left side of both panels). Red “targets” in Figure 5b are locations where representative pDA and Pseudo-nitzschia
abundances are shown on select dates in adjacent boxes. Gray shading along the coast indicates regions where Pseudo-nitzschiawas the dominant phytoplankton.
(c) A Bongo net tow sample off Point Conception on 24 June (concentrated sample, top panel; microscopic image of ~100X diluted sample at 200X magnification,
bottom panel). ND = not detected.
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stranded along beaches in central California exhibiting signs of neuroexcitotoxicity including seizures, head
weaving, and ataxia [Scholin et al., 2000]. As sea lions are highly visible on public beaches and have been
impacted every year in California since 1998 [Bejarano et al., 2008], the animals examined at veterinary
research hospitals serve as relatively robust indicators of the severity of toxic blooms. From 2010 to 2013,
the numbers of live sea lions stranding on the central California coastline with suspected DA toxicosis and
admitted to The Marine Mammal Center in Sausalito, California, averaged 64± 21 animals per year.
Beginning in 2014 and through 2015, the number of stranded sea lions from the same region diagnosed with
suspected DA toxicosis rose to over 200 per year with 229 cases documented in 2015 (Figure 1). On 21 May
2015, DA-related seizures and high levels of DA in feces (1014 ngg�1) were confirmed for a sea lion found on
Long Beach, Washington, making this the first documented case of DA toxicosis in a sea lion this far north on
the U.S. West Coast. Although DA was detected in several other stranded marine mammals in Washington
and Oregon, DA-associated lesions were not confirmed in those animals as they were not examined histolo-
gically. Sea lions commonly feed on planktivorous fish such as northern anchovies (Engraulis mordax) that can
be found in schools as deep as 100m and several meters thick. During the Shimada cruise, anchovies col-
lected with net hauls to depths of ~30m contained DA concentrations between 1–505μg DA g�1 (whole fish)
and 1–3239μg DA g�1 (viscera). It is probable that stranded mammals with measurable DA in March 2015
acquired the toxin from these deep diving anchovies that fed on short-lived blooms of toxic Pseudo-nitzschia
residing near the base of the nutrient-depleted waters of the warm anomaly.

6. Prognosis

While DA reached unprecedented levels in water samples, planktivorous fish and marine mammals, field
experiments suggest even greater toxicity had the bloom been provided with additional macronutrients
[Kudela et al., 2008]. Nutrient manipulation experiments conducted in Monterey Bay during 2015 demon-
strated that cellular toxicity increased up to fivefold in experiments of exponentially and stationary-growing
assemblages of P. australis (Figure 6e). Thus, the combination of warm ocean water and expected future
increases in coastal nutrient loading from runoff (globally [Seitzinger et al., 2010; Lee et al., 2016] and locally
[Bergamaschi et al., 2012]) could potentially lead to yet larger toxic events.

Although 2015was unusual in the spatial extent andmagnitude of the warm anomaly, the west coast of North
America experiences regular warm periods in response to approximately decadal forcing from El Niño and the
Pacific Decadal Oscillation (PDO; Figure 6a), with concomitant biological responses [Chavez et al., 2002;Mackas
and Galbraith, 2002; Peterson and Schwing, 2003; Fisher et al., 2015]. Previous studies suggest that Pseudo-
nitzschia abundance in southern California is correlated with both the PDO and the North Pacific Gyre
Oscillation [Sekula-Wood et al., 2011]. Laboratory experiments conducted with P. australis strains isolated from
Monterey Bay, California, in 2015 demonstrate that this toxic diatom reaches maximal growth rates at
~17–18°C with specific growth rates increasing by ~threefold from 5 to 17°C (Figure 6d). The resulting esti-
mated growth rate anomalies (Figure 6b) exhibit a strong (r= 0.36, p< 0.001) correlation between P. australis
growth potential and the PDO with 1 month lag and to the Oceanic Niño Index (ONI) with a 3 month lag
(r= 0.34, p< 0.001). Toxin concentration in razor clams showed a strong relationship, with a 3month lag to
both growth potential (r=0.14, p< 0.001) and the ONI (r=0.20, p<<0.001), and with the PDO (r=0.16,
p<<0.001) at zero lag (Figure 6c). Moreover, the historical DA events in Figure 6c also track regional anomalies
in southern zooplankton species [Fisher et al., 2015] (which, at times, peak in the year following an El Niño, simi-
lar to some DA events shown here; see their Figure 2), suggesting a relationship between toxic events and
advectivelydrivenecosystemshifts [Bi et al., 2011]. Thus,west coastwide toxicbloomevents aredirectly related
to warm anomalies associated with both El Niño and PDO cycles, leading to faster growth (and northward
expansion of P. australis habitat as seen in 2015), followed by increased toxin accumulation in razor clams.

This paper documents the first Pseudo-nitzschia bloom to negatively impact both shellfish and fish harvest
industries, as well as marine mammal health, along the entire U.S. and Canada west coasts. What led to such
an unprecedented monospecific toxic bloom? Studies of P. australis isolated from coastal California waters
show that this organism is well adapted to low-nutrient conditions and is capable of responding rapidly to
excess nutrients during upwelling, as well as to a variety of nitrogen sources, making the conditions during
2015 particularly amenable to blooms of this species [Cochlan et al., 2008; Kudela et al., 2010]. Laboratory
and field experiments conducted in 2015 with P. australis confirm that it responds positively to both warm
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temperatures and enhanced nutrient loading. We suggest that the physiological capabilities of P. australis to
acquire nitrate [Cochlan et al., 2008], to utilize a variety of nitrogen sources for growth [Howard et al., 2007],
and to complex trace metals [Wells et al., 2005] selected for this genus over all other phytoplankton in the
natural assemblage. The survival of P. australis in the anomalously warm and nutrient-depleted waters, its
unusual presence along the entire continental margin of the western U.S. prior to the upwelling season,
and its rapid expansion following the injection of nutrients with the spring transition to upwelling conditions,
resulted in the coastwide, high-impact bloom. We may anticipate similarly severe toxic algal blooms along
the North American west coast in future years with enhanced northward transport and relatively warm ocean
conditions, including but not limited to El Niño periods. Given the large-scale warming and potential increase
in frequency of extreme events expected with climate change [Cai et al., 2014] coupled with documented
links between increased temperature and increased Pseudo-nitzschia abundance [Hinder et al., 2012], both
the warm anomaly and the massive 2015 toxic algal bloom serve as instructive examples for what future
decades may hold in store.

Figure 6. Variability of historical toxic events, biological response, and mechanisms. (a) The ONI (gold indicates El Niño,
blue indicates La Niña, gray represents neutral conditions) and the PDO (black line). (b) Pseudo-nitzschia growth rate
anomaly estimated using the temperature-growth relationship in Figure 6d. (c) Razor clam DA concentration at three
beaches (sites in Figure 4). Periods of El Niño conditions (gray shading) and the 20 ppm regulatory DA limit (black line) are
indicated. (d) Temperature-growth rate results from laboratory cultures for three strains of P. australis isolated by H. Bowers
from Monterey Bay during spring 2015. (e) Effects of nutrient enrichment on cell toxicity. Error bars in Figures 6d and 6e
represent the standard error of the mean.
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